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Seminar 7:  The Logic of Principia Mathematica 

Volume 1 of Principia Mathematica, in which Russell and Whitehead set out their reduction of 
arithmetic to logic was published in 1910.  Although the reduction adopts a conception of number very 
much like Frege’s, it is developed in a system of logic designed to avoid the paradox that defeated 
Frege.  Avoiding it required giving up the idea that for every formula in the logical language, there is a 
set (perhaps empty, perhaps not) of all and only the things that satisfy it.  The problem was to block the 
generation of problematic sets while allowing those needed for the reduction. 
 
Russell used a hierarchical theory of sets that was somewhat similar to Frege’s hierarchy of concepts. 
His system can be formulated as one in which predicates designate, not Fregean concepts, but the 
extensions of those concepts (i.e. the sets of things of which the predicates are true). On this picture, the 
members of 1st-level sets are individuals (i.e. non-sets), the members of 2nd-level sets 1st-level sets, and 
so on.  Quantifiers predicate membership of an n-level set in an n+1-level set. First-order quantification 
(over individuals) predicates membership of a 1st-level set in a 2nd-level set (the extension of the 
quantifier). Second-order quantification (over 1st-level sets) predicates membership of a 2nd-level set in a 
3rd-level set (the extension of the 2nd-order quantifier), and so on.  Russell’s paradox won’t arise, because 
we can’t express the idea of a set being a member of itself, or not being a member of itself.  
Russell’s conception of natural numbers – as sets of equinumerous sets – parallel Frege’s conception of 
them as sets of concepts with equinumerous extensions.  For Russell, zero is the 2nd-level set the only 
member of which is the first-level set that contains no members.  The number 1 is the 2nd-level set that 
contains all and only 1st-level sets that contain an individual x and only x. The number 2 is the 2nd-level 
set that contains all and only 1st-level sets that contain distinct individuals x and y, and only them.  In 
general, the successor of m is the set n of those 2nd-level sets z that contain a member which, when 
removed from z, leaves one with a member of m. The set of natural numbers is the smallest 3rd-level set 
that contains zero and is closed under successor (i.e. contains the successor of each of its members).  If 
we don’t run out of sets, this is sufficient to prove the axioms of arithmetic in a paradox-free system.   
What is needed not to run out of 2nd-level sets to serve as natural numbers? We need infinitely many 
individuals (non sets). Suppose, for the sake of argument, there were only 10 individuals. Then the 
number 10 would be the 2nd-level set the only member of which is the 1st-level set containing all 10 
individuals.  The successor of 10 – i.e. 11 – would be the 2nd-level set of those 1st-level sets z that 
contain an individual x, which, when removed from z, leave one with the set of 10 individuals. But since 
there is no such 2nd-level set z, the successor of 10 – i.e. 11 – will turn out to be the 2nd-level set with no 
members.  If we then compute the successor of 11, it too will be the 2nd-level set with no members.  So 
in this scenario it turns out that two different numbers – 10 and 11 – have the same successor.  Since this 
violates one of the axioms of arithmetic, Russell’s reduction of arithmetic will fail unless there are 
infinitely many individuals (non-sets).  Realizing this, he added it as an axiom of his system. 
Doing this was technically, but not philosophically unproblematic.  Since the existence of infinitely 
many individuals (non-sets) isn’t a matter of pure logic, the need for the axiom defeats the classical 
epistemological motivation for logicism – namely to ground all mathematical certainty in the most 
fundamental and unchallengeable form of logical certainty. Realizing this, Russell found other 
justifications, including the unification of mathematics in a single comprehensive system and the ability 
to explain how mathematical knowledge could, in principle, be achieved from an underlying system of 
logic plus his hypothesis about the multiplicity of individuals.  Later reductions were able to dispense 
with his need to assume infinitely many individuals by adopting different principles for generating sets – 
ones that prevented the generation of paradoxical sets by divorcing set theory from logic and setting it 
up as an axiomatic mathematical theory in its own right.  What no one could do was reduce all 
mathematics to anything that could plausibly be regarded as pure logic. 
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Russell the Ontologist:  The “No Class Theory” 
This sketch fits the way Russell was understood by most logicians and scientifically minded 
philosophers in the decades that followed Principia Mathematica.  Alfred Tarski, Rudolf Carnap, Carl 
Hempel, and W.V.O. Quine all saw his reduction as an important achievement, and took lessons from it 
about the importance of set theory for the development of logic and mathematics. But they didn’t view 
his reduction in the way Russell did. By the time of Principia Mathematica, he had rejected sets, or 
“classes,” which he now called “logical fictions.” The higher-order variables in Principia Mathematica 
were said to range over “propositional functions” rather than sets.  By 1910 he had rejected his earlier 
“realist” view of them as non-linguistic entities, and had come to think of them as simply formulas. In 
doing so, he adopted a de-ontologized interpretation of his technical reduction that was shared by 
virtually no one else. Most mathematicians, logicians, and philosophers regarded an ontology of sets as 
unproblematic.  Over time, the preferred method of studying them often came not from a set theoretic 
version of Russell’s theory of logical types, but from the axiomatic treatment of ZF set theory. 
Although Russell allowed himself speak of “sets/classes” he explicitly disavowed commitment to them 
as entities. His position is sketched in section 2, Chapter 3 of the Introduction to Principia Mathematica. 

“The symbols for classes, like those for descriptions, are, in our system, incomplete symbols: their uses are 
defined, but they themselves are not assumed to mean anything at all.  That is to say, the uses of such 
symbols are so defined that when the definiens is substituted for the definiendum, there no longer remains 
any symbol supposed to represent a class. Thus classes, so far as we introduce them, are merely symbolic 
or linguistic conveniences, not genuine objects as their members are if they are individuals.” (71-2) 

According to Russell, a formula that seems to say that F is true of the (first-level) set of individuals 
satisfying G is really an abbreviation of a more complex formula that says that F is true of some 
propositional function that is true of all and only the individuals that satisfy G. Suppose, for the moment, 
that they are functions from objects to propositions. Then, to say that such a function is true of an object 
is to say that it assigns the object a true proposition, and to say that propositional functions are 
extensionally equivalent is to say they are true of the same things.  (Similarly for two properties or for a 
property and a propositional function.)  
Next consider a propositional function that takes a property or propositional function as argument. Call 
it extensional iff it whenever it is true of its argument A, it is true of all arguments extensionally 
equivalent to A.  Not all propositional functions are extensional in this sense, but many are. Suppose that 
p1 and p2 are different but extensionally equivalent propositional functions, the former mapping an 
arbitrary individual a onto the proposition that if a is a human, then a is a human and the latter mapping 
a onto the proposition that a if a is a featherless biped, then a is a human. Now let ‘Y’ be a first-level 
predicate variable. Then the propositional function designated by ⎡I believe ∀xYx⎤ is one that maps 
propositional functions onto propositions expressed by the corresponding belief ascriptions. It may 
assign p1 a true proposition about what I believe while assigning p2 a false proposition. Thus, the 
propositional function designated by the belief ascription is intensional, rather than extensional. 
Since, as Russell plausibly holds, only extensional propositional functions are relevant to mathematics, 
the system in Principia Mathematica can be restricted to them.  When one does this, the only thing 
about the proposition assigned by a propositional function to a given argument that matters in Russell’s 
system is its truth value. This being so, we can reinterpret the system to which he reduces arithmetic as 
one involving functions from arguments to truth values (rather than functions from argument to 
propositions) – without losing anything essential to the reduction.   
In fact we can go further. A function from arguments to truth values is the characteristic function of the 
set of things to which it assigns truth. There is no mathematically significant difference between 
working with sets and working with their characteristic functions; anything done with one can be done 
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with the other.  Nor is there any important philosophical difference between the two. Why then did 
Russell insist on calling classes “logical fictions”, thus denying that there really are such things?  And 
how can one understand the system in Principia Mathematica if we take him seriously on this point? 
Quantification in Principia Mathematica  
The answer to the first question is that when classes are treated as real entities two basic problems 
connected with Russell’s type-theoretic reduction of arithmetic to logic resist solution.  The first is that 
Russellian natural numbers have to be located at some level of the hierarchy – most naturally the level at 
which we can predicate things of sets of sets of individuals.  This makes it impossible for Russell to 
capture the insight that any entities -- including classes if there by such – in the way he wishes.  He 
explains what this amounts to in a passage from Introduction to Mathematical Philosophy in 1919. 

“In seeking a definition of number, the first thing to be clear about is what we may call the grammar of our 
inquiry.  Many philosophers, when attempting to define number, are really setting to work to define 
plurality, which is quite a different thing.  Number is what is characteristic of numbers, as man is what is 
characteristic of men.  A plurality is not an instance of number, but of some particular number.  A trio of 
men, for example, is an instance of the number 3, and the number 3 is an instance of number; but the trio is 
not an instance of number.  This point may seem elementary and scarcely worth mentioning; yet it has 
proved too subtle for the philosophers, with few exceptions.   
A particular number is not identical with any collection of terms having that number:  the number 3 is not 
identical with the trio consisting of Brown, Jones, and Robinson.  The number 3 is something which all 
trios have in common, and which distinguishes them from other collections.  A number is something that 
characterizes certain collections, namely, those that have that number.” (11-12). 

Russell’s point is that just as the definition of human should provide us is not with an individual human 
but with the common characteristic of all humans,  so the definition of the number three should provide 
us not with any set of three things, but with something that all sets of 3 things have in common – 
membership in the number three.  Since all sets at all levels can be counted, Russell’s goal of providing 
something all trios have in common can’t be satisfied if 3 is located at one level of the hierarchy.   
The second problem with taking classes to be entities was in giving non-arbitrary justifications of the 
type-theoretic restrictions of Russell’s hierarchy. The hierarchy is designed to guarantee for each 
meaningful formula at every level of the hierarchy that there is a set of all and only those things that 
satisfy the formula.  But in order to block paradox, certain formulas are ruled illegitimate. It is not 
enough for Russell that these restrictions be technical devices that block contradiction.  To be purely 
logical, they must be inherent in general principles for reasoning meaningfully about any subject.  One 
hint that his type restrictions don’t meet that standard is that many statements that violate them appear 
not only to be meaningful but true. E.g.,  For any two sets whatsoever, if their members can be put in 1 
to 1 correspondence, they are equinumerous; No set is a member of itself; No set at one level of the 
hierarch is identical with any set at another level of the hierarchy; For each formula at every level of the 
hierarchy there is a set of all and only those things that satisfy it.  The apparent truth of all these claims, 
which violate the type restrictions, suggests that if sets are genuine entities we can talk about in the way 
we can talk about other things, then Russell’s type theory artificially restricts what we can say about 
them.  Worse, some things it doesn’t allow us to say govern the construction of the hierarch itself.  
For reasons like these, Russell wished to avoid commitment to classes altogether.  By the time of 
Principia Mathematica, he thought he knew how to do so.  The key was his understanding of 
quantification – which included elements of what we now call ordinary objectual quantification, 
elements of what we now call metalinguistic quantification, and elements of what we now call 
substitutional quantification.  In Russell’s time, these had not been clearly distinguished, so it isn’t 
surprising that some of his comments in Principia Mathematic suit one of these, and some suite others, 
without any explicit recognition that the alternatives are quite different. 
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Consider the quantificational sentences:  ∀x …x… and ∀Φ …Φ…   
On an ordinary objectual interpretation these tell us that for every individual o and every class C …x… 
and …Φ… are true when the variables are assigned the object or class as value.  It doesn’t matter how 
large the domains of objects and classes are – finite, countably infinite (the size of the set of natural 
numbers), non-countably infinite (the size of the set of all subsets of natural numbers), and so on 
ascending to greater and greater infinities.   
On a metalinguistic interpretation the consequences of these quantified sentences are metalinguistic 
claims that each substitution instance -- ‘…n…’ or ‘….f…’ is a true sentence – where a substitution 
instance is formed by erasing the quantifier and substituting either a name for the individual variable ‘x’ 
or a formula for the variable ‘Φ’.  Assuming that there are only countably many names and formulas in 
the language, the metalinguistic instances of these quantified claims are always countable. 
The substitutional interpretation is like the metalinguistic interpretation except that the consequences of 
the quantified claims are all its substitution instances, rather than metalinguistic claims that those 
sentences are true.  Russell’s “no-class theory” requires thinking of quantification substitutionally. 
In Principia Mathematica he speaks of propositions and propositional functions in a variety of different, 
and not always consistent, ways.  But most of the time he seems to take propositions to be sentences, 
and propositional functions to be formulas one gets from them by replacing an occurrence of an 
expression with a free occurrence of a variable.  Thus, in An Inquiry into Truth and Meaning (1940) he 
says “In the language of the second-order variables denote symbols, not what is symbolized,” (192), 
while in My Philosophical Development (1959) he says “Whitehead and I thought of a propositional 
function as an expression.” (92)  If this really was what the authors meant, and if propositional functions 
were the values over which their higher-order variables ranged, it might seem that a sentence of the form 
‘∀P …P…’ must mean that every value of the formula ‘…P…’ is true.   
Language very like this is not hard to find in Principia Mathematica. For example, in section 3 of 
chapter 3 of the Introduction, Russell sketches the idea of a hierarchy of notions of truth that apply to the 
different levels of his type construction.  Assuming that truth has already been defined for quantifier-free 
sentences at the lowest level, he explains first-order quantification as follows: 

“Consider now the proposition ⎡∀x Φx⎤.  If this has truth of the sort appropriate to it, that will mean that every 
value of Φx has “first truth”  [the lowest level of truth].  Thus if we call the sort of truth that is appropriate to 
⎡∀x Φx⎤ “second truth,” we may define ⎡∀x Φx⎤ as meaning ⎡every value for ‘Φx’ has first truth⎤ … 
Similarly…we may define ⎡∃x Φx⎤ as meaning ⎡some value for ‘Φx’ has first truth⎤. 

In addition to assuming that a similar explanation can be given for higher-order quantification, we 
assume that “first-truth” conditions and meanings have first been given for quantifier-free sentences.  
For atomic sentences, the truth conditions are assumed to involve correspondence with atomic facts that 
consist of particular individuals standing in n-place relations. The truth conditions of sentences that are  
truth-functions of atomic sentences can be computed from the atomic facts. Supposing that propositional 
functions are formulas with free occurrences of variables, we can take the values of such formulas to be 
sentences that result from substituting an individual constant for all free occurrences of the variable in 
the propositional function.  On this interpretation, his claim about what quantified sentences mean takes 
them to predicate truth of the (closed) sentences that are “values” of the corresponding open formulas 
that are identified with “propositional functions;  universal generalizations say that each of these 
“values” is true, while existential generalizations say that some are.   
However, this won’t do. First, it would make all arithmetical statements arising from Russell’s reduction 
to be metalinguistic statements about his logical language, with the result that all arithmetical knowledge 
would be characterized as knowledge of that language. That can’t be correct.  Second, it would drive an 
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epistemological and metaphysical wedge between quantified statements and their instances. For when 
quantificational statements are understood in this way and ⎡Φn⎤ makes no claim whatever about 
language, it will be neither an a priori nor a necessary consequence of ⎡∀x Φx⎤ (if the semantic 
properties of Φx are neither essential to it nor knowable a priori), while ⎡∃x Φx⎤ will be neither an a 
priori nor a necessary consequence of ⎡Φn⎤ (on the same assumption).  Third, it doesn’t fit what Russell 
says four pages later in Principia Mathematica about the relationship between the facts in virtue of 
which universal generalizations are true and those in which their instances are. 

“We use the symbol ⎡∀x Φx⎤ to express the general judgment which asserts all judgments of the form Φx.  
… in any judgment ⎡∀x Φx⎤ the sense in which this judgment is or may be true is not the same as that in 
which Φx is or may be true.  If Φx is an elementary judgment, it is true when it points to a corresponding 
complex [i.e. to a fact that makes it true].  But ⎡∀x Φx⎤ does not point to a single corresponding complex 
[i.e. there is no single fact that makes it true]: the corresponding complexes [facts] are as numerous as the 
possible values of x.” (46) 

If ⎡∀x Φx⎤ meant that all substitution instances of the formula Φx were true (in the appropriate sense of 
‘truth’), then the condition necessary and sufficient for its truth would be the existence of a general fact 
about language, and not the existence of the multiplicity of nonlinguistic facts corresponding to all its 
instances (which seems to be what Russell has in mind).  Moreover, the metalinguistic judgment 
expressed by ⎡∀x Φx⎤ would not, as Russell indicates that it does, straightforwardly “assert” all the 
nonmetalinguistic judgments expressed by its instances. For these reasons, the metalinguistic 
interpretation of quantification suggested by some of Russell’s remarks wasn’t his consistent and 
considered view (if he had one). 
There is a better interpretation.  On this interpretation, the quantifiers in his reduction are what are now 
called “substitutional.” They don’t range over objects of any kind – linguistic or nonlinguistic. Instead 
they are associated with substitution classes of expressions. Although their truth conditions are stated 
metalinguistically, their content is supposed to be nonlinguistic. Thus, they are not subject to the 
objections just raised against the metalinguistic interpretation of the quantifiers. Using objectual 
quantifiers over expressions, we can give substitutional truth conditions of quantified sentences in the 
normal way – as Russell does. ⎡∀x Φx⎤ and ⎡∃x Φx⎤ are true, respectively, iff all, or some, of their 
substitution instances are true, where the latter are gotten from replacing free occurrences of ‘x’ in Φx 
by an expression in the relevant substitution class.  This explanation will work, provided that the truth 
values of the sentences on which the quantified sentences depend are already determined before 
reaching the quantified sentences, and so do not themselves depend on the truth or falsity of any higher-
level substitutionally quantified sentences. 
There are three important points to note.  First, if one combines the hierarchical restriction inherent in 
substitutional quantification with Russell’s system of higher levels of quantification, strong versions of 
the type restrictions he needs will fall out from the restrictions on substitutional quantification, without 
requiring further justification.  Second, on the substitutional interpretation, there is no need for what 
look like “existential” generalizations – i.e. ⎡∃x Φx⎤, ⎡∃P Φ(P)⎤, ⎡∃P2 Φ(P2)⎤, etc. – to carry any 
ontological commitment.  They won’t – as long as the relevant substitution instances can be true even 
when the constant replacing the bound variable doesn’t designate anything. Third, for this reason, it is 
tempting to think that no quantificational statements in the hierarchy carry any ontological commitments 
not already carried by quantifier-free sentences at the lowest level.  Since Russell took accepting their 
truth to commit one only to individuals and properties, it would be natural for him to take himself to be 
free to characterize classes, numbers, and nonlinguistic propositions and propositional functions as 
merely “logical fictions,” while nevertheless appealing to them when “speaking with the vulgar.” 
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Let’s look at this a little more closely.  Suppose that Russell’s first-order quantification is 
substitutional, and so depends on quantifier-free sentences at the first level of his hierarchy. These 
sentences will include all truth-functional compounds of the atomic sentences (which consist of n-place 
predicates combined with n occurrences of names).  Predicates stand for n-place properties, while names 
designate individuals. An atomic sentence is true iff its names designate individuals that have the 
property designated by its predicate.  Since Russell’s axiom of infinity requires infinitely many 
individuals (non-sets), a substitutional interpretation of first-order quantification will require infinitely 
many names that can be substituted for individual variables in order to secure all the instances needed to 
evaluate the quantified sentence. On this interpretation, ⎡∀x Φx⎤ will be true iff every sentence is true 
that results from substituting an occurrence of a name associated with ‘x’ for each occurrence of ‘x’ in 
Φx; ⎡∃x Φx⎤ is true iff at least one such substitution instance is true.  
Second-order quantification occurs at the next level of the hierarchy. Here predicate are variables 
associated with predicates of the first level. The associated predicates include all simple predicates used 
to construct atomic sentences, plus complex predicates.  For any first-level sentence in which simple 
predicates occur, we need a complex predicate for each of the ways of abstracting one or more of the 
predicates via lambda abstraction – as illustrated by expressions like λFλG[Φ (…F…G)]. All these 
predicates, simple and compound, are associated with the predicate variables. So, on the substitutional 
interpretation, ⎡∀X1 Φ(X1)⎤ is true iff every sentence is true that results from substituting an occurrence 
of a predicate, simple or complex, associated with ‘X1’ for each occurrence of ‘X1’ in Φ(X1); similarly 
for second-order existential quantification.    
Looking at this from the outside (where we allow ourselves to speak of sets), this means that our 
substitutional construal of second-order quantification parallels ordinary objectual second-order 
quantification over those sets that are extensions of first-level predicates of individuals (including 
complex predicates). This process is repeated for third-order quantification, except that here complex 
predicates are the only ones in the substitution class.  This level mimics objectual quantification over 
those sets that are extensions of second-level predicates, members of which are sets of individuals that 
are extensions of first-level predicates. The hierarchy continues uniformly from there on. 
 We now know that this results in a huge diminishment of expressive power of higher-order 
quantification.  Whereas objectual quantifiers range over all sets at a given level – both those that are 
extensions of predicates at that level (of Russell’s language) and those that aren’t -- the substitutional 
quantifier mimics only quantification over the former.  If, as is standardly assumed, every sentence and 
every predicate is a finite sequence of the logical and nonlogical vocabulary, the domain of all sets at a 
given level will far outstrip the domain of all sets that are the extensions of predicates at that level. As a 
result, the expressive power of the underlying “logical” theory to which arithmetic is to be reduced is 
drastically diminished by treating its quantifiers substitutionally, to the detriment of Russell’s reduction. 
Because these results hadn’t been established in 1910, there was no way for Russell to know them.  To 
him, the substitutional conception – to the limited extent that he could distinguish it from the normal 
objectual conception – seemed to solve his problems.  Recall the problem of locating the reduction at 
one particular level of the hierarchy.  On the ontological interpretation of higher-order quantification, 
locating the numbers at a single level makes it impossible for Russell’s definition of the number 3 to 
capture what all trios have in common – namely membership in the number 3 -- because lots of trios of 
classes at higher levels are excluded from membership.  But if one thinks there are no classes, and 
indeed no entities of any sort beyond the individuals and properties designated by quantifier-free 
sentences at the first level, the problem evaporates; all trios of entities will be members of the number 3.  
Second, if quantifiers never range over totalities of entities at all – because they are substitutional – there 
is no need to restrict the legitimate totalities over which they are allowed to range. On the contrary, the 
restrictions inherent in quantification fall out of the very meaning of the substitutional quantifiers.  Thus, 
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one who takes all quantification to be substitutional will view the type restrictions imposed by Russell’s 
hierarchical system to be inherent in all intelligible thought. 
Seeing this removes what would otherwise be a puzzle in the interpretation of Russell.  On the one hand 
his original theory of types in Principia Mathematica – called the “ramified theory of types” -- was 
highly complicated, very restrictive, and required an axiom -- called the “axiom of reducibility” – that 
sparked distrust and disbelief from the moment it was formulated.  The ramified theory and its 
associated axiom was given up by virtually all mathematicians and logicians, including Russell, after 
1926 when Frank Ramsey replaced the ramified theory with the simple theory of types. For these 
metamathematicians, who thought of quantification as objectual, the new theory was a vast improvement 
over the original. But the philosophical idea that Russell’s logicist reduction showed how the 
ontological commitments associated with a given area of discourse could be drastically reduced by 
logical means retained a very strong following in philosophy for decades, especially during the heyday 
of logical positivism, between 1925 and 1945. What was not then recognized is that the ontological idea 
– and in particular his “no class theory” -- was linked in Russell to his technically impoverished, and I 
would say inadequate substitutional interpretation of quantification.  Thus, if we want to preserve the 
mathematical legacy of Principia Mathematica we need to clearly separate it from some of the 
philosophically suspect lessons Russell and other philosophers drew from it. 
In section 5 of chapter 10 of my book, between pp. 520 and 531, I catalogue some of the main problems 
to which Russell’s flirtation with substitutional quantification led.  For example, between 520 and 525, I 
show how it blocked the most natural Fregean proof of mathematical induction while making it 
impossible to imagine reductions of mathematical theories that allow uncountably many objects.  
Between pp. 525 and 531 I show that it was also inconsistent with various parts of his general 
philosophical logic, including his account of quantification in “On Denoting.” According to “On 
Denoting” the proposition that everything is F predicates always assigning a truth when given an object 
as argument of the function that maps an argument o onto the proposition that predicates F-hood of o. 
This quantified proposition isn’t equivalent to any collection of propositions, finite or infinite: that o1 is 
F, that o2 is F, …. For any such collection C, it is possible for the general proposition to be false even if 
all the particular propositions in C are true. (Just imagine possible scenarios in which there are more 
individuals, of the relevant sort, than are covered by the individuals in C.) Also, knowing that everything 
is F doesn’t guarantee knowing any instance of that claim; though one who knows the general 
proposition, while also knowing of o, has enough to conclude that o is F.  
Russell didn’t repudiate these thoughts, so congenial to the usual objectual understanding of first-order 
Frege-Russell quantification, when writing Volume 1 of Principia Mathematica.  Granted, some of the  
passages in that work do suggest a substitutional interpretation.  However other passages, like the 
following, don’t. 

“Our judgment that all men are mortal collects together a number of elementary judgments.  It is not, 
however, composed of these, since (e.g.) the fact that Socrates is mortal is no part of what we assert, as 
may be seen by considering the fact that our assertion can be understood by a person who has never heard 
of Socrates.  In order to understand the judgment “all men are mortal,” it is not necessary to know what 
men there are.  We must admit, therefore, as a radically new kind of judgment, such general assertions as 
“all men are mortal.” (45) 

On a substitutional interpretation, the truth of ‘All men are mortal’ should, for Russell, consist in the 
truth of ‘If Socrates is a man, then Socrates is mortal,’ ‘If Plato is a man, then Plato is mortal,’ etc.   
Putting this together with the passage from Principia leads to an obvious question.  How can one who 
has never encountered the name ‘Socrates’ or heard of the man it names (and similarly for other men 
and names) make the judgment, or even understand the sentence ‘All men are mortal?” 
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This question is easily answered, if the quantification is objectual in the usual Frege-Russell sense. On 
this interpretation, the proposition expressed by the sentence says of a certain (real, non-linguistic) 
function fmortal -- from arguments to truth (in Frege’s case) or from arguments to truths (in Russell’s case) 
-- that it assigns truth (or a truth) to an argument iff that argument is a man. Although entertaining this 
proposition, and knowing it to be true, requires acquaintance with fmortal and the property predicated of 
the function, it does not require acquaintance with any particular individual, much less knowledge of 
which individuals are men, or even what individuals there are. Hence, the objectual understanding of the 
quantifier fits Russell’s observation in the passage.  
The same can’t be said of the substitutional understanding of the quantifier.  On that account “All men 
are mortal” must be seen as meaning something like If Socrates is a man, then Socrates is mortal, If 
Plato is a man, then Plato is mortal, and so on.  This suggests that understanding the substitutional 
interpretation of the quantified sentence requires understanding the names ‘Socrates’, ‘Plato’, and so on 
– which for Russell requires being acquainted with the man Socrates, the man Plato, and so on.  The 
same holds for all names in the substitution class. Far from vindicating the observation in the last quoted 
above passage, this result contradicts it. Thus, if first-order quantification in Principia is substitutional, 
then the account of quantification in Principia is inconsistent with some of Russell’s metatheoretical 
statements about it there, as well as with the account of quantification in “On Denoting,” which 
underwrites those statements. 
Although it hardly seems possible for things to get worse for the substitutional interpretation of Russell, 
they do. To avoid all commitment to classes, Fregean concepts, and non-linguistic propositional 
functions, he would have to treat even first-order quantification as substitutional.  But then, since his 
axiom of infinity will require infinitely many individuals, he will need infinitely many logically proper 
names. For Russell, these are simple terms the meanings of which are their referents – with which we 
must be acquainted in order to understand the names.  It is highly doubtful that anyone’s language could 
contain infinitely many such terms. Surely, they couldn’t all be learned as separate lessons, which is how 
one imagines they would have to be acquired. It is similarly doubtful that anyone could be acquainted, in 
Russell’s highly restrictive sense, with infinitely many individuals. If, as presumably we must, assume 
(i) that no one is capable of such understanding and acquaintance, while recognizing (ii) that 
understanding the substitutional quantification employed requires it, we arrive at an interpretation of 
Russell’s system that renders it unintelligible, by his own lights. 
In response, one might say that a reasonable interpreter should revise some of Russell’s restrictive views 
about names and acquaintance in the service of arriving at a more adequate version of his overall 
position.  Perhaps, but if one takes this route, there are compelling reasons to include his skepticism 
about classes and his flirtation with substitutional quantification – which he was not then in any position 
to fully understand – as prime candidates for revision. The point is reinforced when we bring identity 
into the mix. The analysis of singular definite descriptions in “On Denoting” tells us that a formula, 
⎡Ψ (the x: Φx)⎤, containing a description is an abbreviation of the formula ⎡∃x ∀w [(Φ(w) ↔ w = x) & 
Ψ(x)]⎤ containing the identity predicate. In Principia Mathematica, Russell’s definition of identity 
(between individuals) tells us that the formula ‘w = x’ is an abbreviation of the higher-order formula 
⎡∀Θ (Θw ↔ Θx)⎤.  Putting the two together we have the result that ⎡Ψ (the x: Φx)⎤ is an abbreviation of 
⎡∃x ∀w [(Φ(w) ↔ ∀Θ (Θw ↔ Θx)) & Ψ(x)]⎤.   
This is no problem if the predicate variables range over all subsets of the domain of individuals (or over 
their characteristic functions).  Since these include all sets that contain only a single individual, x and w 
will be members of the same sets, and so satisfy the same predicates iff they are identical. But if 
quantifiers are interpreted substitutionally, then (since ‘=’ isn’t primitive) there will be no guarantee that 
for every individual in the domain, there will be a first-order formula that is true of it, and nothing else.  
There will be no guarantee that two or more different objects won’t satisfy precisely the same first-order 
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formulas, and so be indistinguishable in the system. Suppose there are such individuals.  Then, what 
Russell’s axiom of infinity (needed for the proof of arithmetical axiom 4) will require is not just 
infinitely many individuals, but infinitely many individuals distinguished from one another by quantifier-
free first-order formulas. Worse, if distinct individuals x and y are not distinguished by the formal 
system, then any formula true of x will be true of y -- even one which (on the ordinary objectual reading 
of quantification) says that x is the only member of a certain set, or one that says of x that, along with a 
distinct z, are all and only the members of a member of the number two (the set of pairs of individuals).   
How might these problems be avoided?  One could add infinitely many primitive predicates of 
individuals, each applying to a single individual and no two such predicates applying to the same 
individual. But Russell didn’t do that.  Nor would he have done so, since it would, in effect, make 
knowledge of the arithmetical system derived from what was supposed to be logic dependent on 
understanding infinitely many primitive predicates of individuals -- in violation of his doctrine that one 
can understand propositions of logic without knowing any non-logical vocabulary.  Thus, in addition to 
weakening his logicist program, the uniform substitutional interpretation of the hierarchy creates a 
problem for his definition of identity and conflicts with the standard formulation of his theory of 
descriptions, which he continued to employ in Principia.  
In light of all these problems, it is, I think, a mistake to read a uniformly substitutional account of 
quantification into Russell’s logicist program. It is true that some more or less inchoate thoughts of a 
substitutional sort played a role in his views about how paradoxes are to be avoided, how his type 
restrictions might be justified, and how classes, non-linguistic propositions, and non-linguistic 
propositional functions might be eliminated. The powerful attraction of eliminating what he saw as 
problematic entities and his need to see type-restrictions as conditions on the very intelligibility of 
seeming quantification over classes were powerful motivators pushing him toward a substitutional view 
of the quantifiers and a ramified theory of types.  Nevertheless a reconstruction of his position that 
systematically treats quantification as substitutional rather than objectual creates worse problems than it 
solves – for both his logicist program and his broader philosophy.   
That Russell himself didn’t see these problems is due, in part, to the fact that he was not in a position to 
understand substitutional quantification as fully as we do today.  Prior to the 1960s and 1970s few, if 
any, philosophers clearly recognized and distinguished substitutional from objectual quantification. 
What’s more, fundamental metalogical and metamathematical results distinguishing 1st and 2nd-order 
arithmetic in terms of the power of 2nd-order quantification over sets -- were still many years in the 
future when Principia Mathematica was written.  It’s no shame that Russell wasn’t aware of these 
things. What would be a shame is to saddle Principia Mathematica with an interpretation which, if 
consistently carried through, would obliterate or obscure much of the progress he made there. 
The best interpretation is, I think, the one that best coheres with Russell’s most important philosophical 
views, best advances his understanding of the relationship between logic and mathematics, and best 
explains the impact of his work on those who followed. Such an interpretation should, I believe, dismiss 
his radical eliminativism about classes and his flirtation with substitutional quantification as regrettable 
but understandable errors, while treating the quantification in his hierarchy as objectual, ranging over 
individuals and classes (or non-linguistic propositional functions). The complex ramified theory of types 
and the Axiom of Reducibility should be dropped in favor of the simple theory of types, through which 
most of the historical influence of Russell’s reduction has flowed.  I believe that it is this (relatively 
standard) interpretation that has the best chance of illuminating the strengths and weaknesses of  his 
logicist program, while making intelligible its impact on later philosophers and logicians. 

 
 


